Popular Ensemble Methods: An Empirical Study

نویسندگان

  • Richard Maclin
  • David W. Opitz
چکیده

An ensemble consists of a set of individually trained classifiers (such as neural networks or decision trees) whose predictions are combined when classifying novel instances. Previous research has shown that an ensemble is often more accurate than any of the single classifiers in the ensemble. Bagging (Breiman, 1996c) and Boosting (Freund & Schapire, 1996; Schapire, 1990) are two relatively new but popular methods for producing ensembles. In this paper we evaluate these methods on 23 data sets using both neural networks and decision trees as our classification algorithm. Our results clearly indicate a number of conclusions. First, while Bagging is almost always more accurate than a single classifier, it is sometimes much less accurate than Boosting. On the other hand, Boosting can create ensembles that are less accurate than a single classifier – especially when using neural networks. Analysis indicates that the performance of the Boosting methods is dependent on the characteristics of the data set being examined. In fact, further results show that Boosting ensembles may overfit noisy data sets, thus decreasing its performance. Finally, consistent with previous studies, our work suggests that most of the gain in an ensemble’s performance comes in the first few classifiers combined; however, relatively large gains can be seen up to 25 classifiers when Boosting decision trees.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Top-k Parametrized Boost

Ensemble methods such as AdaBoost are popular machine learning methods that create highly accurate classifier by combining the predictions from several classifiers. We present a parametrized method of AdaBoost that we call Top-k Parametrized Boost. We evaluate our and other popular ensemble methods from a classification perspective on several real datasets. Our empirical study shows that our me...

متن کامل

A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

A Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

A Preprocessing Technique to Investigate the Stability of Multi-Objective Heuristic Ensemble Classifiers

Background and Objectives: According to the random nature of heuristic algorithms, stability analysis of heuristic ensemble classifiers has particular importance. Methods: The novelty of this paper is using a statistical method consists of Plackett-Burman design, and Taguchi for the first time to specify not only important parameters, but also optimal levels for them. Minitab and Design Expert ...

متن کامل

Empirical Evaluation of Ensemble Learning for Credit Scoring

Credit scoring is an important finance activity. Both statistical techniques and Artificial Intelligence (AI) techniques have been explored for this topic. But different techniques have different advantages and disadvantages on different datasets. Recent studies draw no consistent conclusions to show that one technique is superior to the other, while they suggest combining multiple classifiers,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Artif. Intell. Res.

دوره 11  شماره 

صفحات  -

تاریخ انتشار 1999